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OPTIMAL CONTROL OF PERIODIC MOTIONS OF LINEAR SYSTEMS 
WITH IMPULSIVE ACTION * 

V.V. ANISOVICH and B.I. KRIUKOV 

A problem is examined of optimizing linear systems with impulsive action and with a 
quadratic performance index. Conditions are formulated for the existence of an 
optimal periodic control. The optimal controls are written in explicit form as 
functions of the phase coordinates and of solutions of auxiliary equations. Discrete 
periodic systems are closely related to such problems were studied in /1,2/, where 
necessary optimality conditions were obtained. 

1. We consider a controllable periodic system of differential equations with impulsive 
action 

2' (t) == AZ (t) + Bu (t) ff (t), t # TV;, I; = 0, *I, +2, . . 
Az~~_,~ = Z(tk + 0)--S (tl; - 0) = VA. Yk = (%‘kl,. . . ., Yhn), Vk = COnSt 

(1.1) 

Here z(t) is an n-dimensional vector-valued function, II (I) is an m-dimensional T-period- 
ic piecewise-continuous vector-valued function, A and Bare constant matrices of dimensions 
11x n and n x m,respectively, f(1) is a continuous n-dimensional T-periodic vector-valued 
function, for some positive integer p and a sequence of instants tk the quantities vk = vk+,,' 
i+,=~k+ T are numbered by a set of integers such that Ik--oo as k-s-cc and tb-++m as 
k-+oo. We assume that the real parts of the eigenvalues of matrix A are nonzero and thata 
positive number 8 can be found such that tk+,-lk>e for all k=O,&f,* 2,.... In this case 
system (1.1) has a unique T-periodic solution /3/. We are required to find a T-periodic 

piecewise-continuous control II(~) and the corresponding T-periodic solution ~(1) of Eq.(l.l), 
such that the functional 

J(u) =&+ U’L’S + ZLLU + s*Mz) dt (1.2) 
0 

(8 is the sign of transposition) takes the smallest value. The matrices K, L, M are constant, 
where Ji is positive-definite and E and Mare symmetric. The control G(I) found thusis called 
optimal. 

Using the rule for the generalized differentiation of piecewise-differentiable functions 

/4/, we obtain 

z' (1) = [z' (t)] + +j (2 (lk + 0) - = (lh ~- 0)) 8 (' - $,) (1.3) 
kc--m 

Here s'(t) is the generalized derivative, [S'(L)] is the usual derivative defined for any t # th. 
Since (2' (r)] = AZ (f) + Bu (1) + f (1) when t +n, the original system (1.1) can be written as 

z' (t) = AZ (t) + Bu (t) + f (t) + z:(t), X (t) = +$ y$ (t - $J (1.4) 
k---m 

Henceforth we assume that the equation 

,','BK-'B'N + N(BK-‘L.--A) + (LK-‘B*-A*)N + LK-‘L* - M = 0 (1.5) 

has a real symmetric solution N. We consider the system of vector differential equations 

z' (f) = Aliz(r) + BK-‘B*r (t) + f (I) + C (t) (1.6) 

r’ (1) = -Al*r (t) + Nf (t) + NS (f) 
A, = A - BK-IL* - BK-‘B’N 

and we assume that the real parts of the eigenvalues of matrix A,are nonzero. In this case 
system (1.6) has a unique T-periodic solution /3/. 
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Theorem 1. When all the above-mentioned conditions are fulfilled the optimal control 
ii(t) of problem (l.l), (1.2) exists and is computed by the formula 

ij (1) = -R-'[(L* + R'N)r (t) - R*i (t)), t # tk (1.7) 
ti (tk + 0) - rs. (fk - 0) = --K-'L*Vk 

where r(t), f(t) is a T-periodic solution of system (1.6). 

Proof. We reduce functional (1.2) to canonic form. To do this we use (1.4) and (1.5) 
to implement the transformation 

.z*Mz = s*NBK-‘B’Ns + s*NBK-‘L*z + .PNBu + z’Nf + 

z*NZ (t) + c~*Lli-~B*Ns + u*B*Nt + f*Nz + (2 (f)l*Ns + 

z*LK-‘L*z - d (s*Nr)/dt 

(1.8) 

Substituting into (1.8) the expression for Nf+NZ (t) found from the second equation of system 
(1.6) and the AZ from (1.1) and using the T-periodicity of functions r and z, we write func- 
tional (1.2) in the canonic form 

T T T 

J (u) = 1 G’KG dt - 5 (r*BK-‘B*r + f’r + r’f) dt - 1 (2 (t) r + r’Z (t)) dt 

0 0 ,u 
G = e + K-‘L*z + K-‘B’Ns - K-‘B*r 

(1.9) 

Because matrix Kis positive-definite the functional (1.9) has a minimum when G=O,i.e., the 
minimum is reached for the value Y= G(t) computed by formula (1.7). Substituting (1.7) into 
(1.4), we obtain the first equation of system (1.6) for the determination of s (0. The pres- 
ence of d-functions in the equations of system (1.6) signifies that z(t) and r(r) change 
stepwise at instants t= fk. Neglecting in the right-hand sides of systems (1.6) the summands 
not containing a-functions, at the instants t = tk we can set Z' (t) = vk0 (t - tk), r' (1) = NYk 6 (t - tk) 
or 

I (tk + 0) - Z (tk - 0) = Vkr P’ (fk + 0) - 7 (tk - 0) = NVl, (1.10) 

Using (1.10) we can compute the magnitude ti(tk+O)-e(tk-0) of the discontinuity in the optimal 
control (1.7). The theorem is proved. 

2. Let there exist a controlled periodic process with inpulsive action 

I' (I) = AZ (t) + Bu (1) + Cu (t) + f (t), t # tk, k = 0, &I, &2, . . . 
AZ I,=,, = Z (tk + 0) - Z (tk - 0) = %‘k 

(2.1) 

whose behavior is determined by two players: the first acts on the process by a control u(t), 
while the second, by a control v (0. The players' own behaviors are estimated by the perform- 
ance index 

J (u, u) = 
f 

(u*Ku + u*L’z + Z’LU + z*Mz + v*Ru) dt (2.2) 
0 

and 

The 
the 

they strive to choose controls z(t) and i?(t) so as to fulfill the condition 

J (n, a) = min,max,J (u, v) (2.3) 

ii(t) and J(t) thus chosen are said to be the optimal control. Here A,B,K,L,M,f,u,z are 
same as in Sect.1, v(t) is a q-dimensional T-periodic piecewise-continuous vector-valued 

function, Ris a constant symmetric negative-definite of dimensions rl x q-matrix. 
We introduce a constant symmetric matrix N1 which is a solution of the equation 

N,NCR-‘C*NN, + N, (NCR-V’ + A,) + (CR-VN + A,*)N, + CR-K’* + BK-‘B* = 0 (2.4) 

and an n-dimensional vector-valued function rl(t) which is a solution of the equation 

Q' 0) = - A~Q (t) + Nd’f 0) + N,NI: (t) (2.5) 
A, = CR-V*N + A,’ + NINCR-‘C’N 

where N is a solution of Eq. (1.5). In addition to the conditions stated in Sect.1 we assume 
that the real parts of the eigenvalues of matrix A, are nonzero. In this case Eq.(2.5) has a 
unique T-periodic solution /3/. Implementing transformations analogous to those in /5/ and 
arguing as in the proof of Theorem 1, we obtain the following statement. 

Theorem 2. When all the above-mentioned conditions are fulfilled the optimal controls 
G(t) and a(t) of problem (2-l)- (2.3) exist and are computed by the formulas 
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where ~~ (L) 

the system 

ii (f) = --K-‘[(L* + WN)T (t) - B’i (t)]. t # th. 

ii (fk + 0) - li (tt - 0) = --K-x*vr 
0 (t) = R-‘C*[(E + NN,)P (t) - Ni, (t)l, t # fk 
6 (tP + 0) - ; (tk - 0) = R-“C*Nvk 

(2.6) 

is a T-periodic solution of Eq.(2.5) and i(t), i(t) is a T-per .iodic solution of 

z' (t) = Alz (t) + (BK-'B* + CI(-'C* + CEl-'CNN,)r (t) - 
CR-'C*Nr, (1) + f (t) $ S (t) 

(2.7) 

r' (f) = A,*r (t) - NCR-‘C*Nr, (I) + !Vf (1) + NZ (t) 

we note that when L=O the optimal control n(t) in (1.7) and (2.6) is a. continuous 

vector-valued function. It is evident as well that if the real parts of all the eigenvalues 

of matrix A, are strictly negative, then the solutions Z(I) corresponding totheoptimal con- 

trols in problems (1.1) , (1.2) and (2.1)- (2.3) are asymptotically stable. 

Note. It is well known /6/ that a linear-quadratic optimization problem leads to a 

matrix Riccatidifferential equation 

N' = NSR-lS*N +N (SK-IL* -A) + (LX-%* - A')N+ Lk'-'L* - .,!f (2.8) 

Assuming that Eq.(2.8) has a. unique T-periodic solution N(t) (under this condition N(t) is a 

symmetric matrix /5/) and using Eq.(2.8) instead of (1.5), we can convince ourselves that ex- 

pression (1.9) remains in force and, consequently, so does the assertion of Theorem 1. 

Using the specific nature of the problem, here we have been able to use instead of Eq. 

(2.8) the simpler Eq.(1.5) whose solution is a constant matrix N. At the expense of this, 

the coefficient Al in system (1.6) also is a constant matrix, which enables us /3/ to formul- 

ate the existence conditions for the T-periodic solution (z(f), r(f)) of system (1.6). An 

analogous situation arises in the minimax problem (2.1)- (2.3). 

Equations of form (1.5) and (2.4) have been used to study linear-quadratic optimization 

problems on an infinite time interval /6/. Such an analogy with the periodic case is natural 

since the solution found on a period can be continued onto the infinite time interval. 
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